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Introduction  

Depuis septembre 2022, plusieurs zones de dépérissement forestier ont été 

identifiées dans les forêts de Guyane Française. Ces zones concernent notamment le 

nord-ouest de la réserve naturelle nationale de la Trinité, le sud de la réserve biologique 

intégrale Lucifer Dékou-Dékou, ainsi que deux secteurs du domaine forestier permanent 

situés dans les forêts domaniales de Paul Isnard et de Montagne de Fer (Cf. Figure 1).  

Figure 1 : Carte de localisation du phénomène de dépérissement  

 

Les défoliations propres à ces zones de dépérissement concerneraient une 

surface de l’ordre de 10 000 ha, touchent autant la canopée que le sous-bois et ne 

concernent que des forêts de terre ferme. Ce phénomène pourrait être en lien avec 

l’intensification de l’ENSO (El Niño Southern Oscillation), alternant des saisons sèches 

sévères en période El Niño et des saisons des pluies très marquées pendant la Niña.  

Ces dépérissements constituent une pression supplémentaire à celles résultant 

directement des activités humaines telles que la déforestation et l'exploitation minière. 

Cette combinaison de pressions met en péril la biodiversité de la forêt amazonienne, 

menaçant la richesse écologique unique de cet écosystème ainsi que les services 

essentiels qu'il fournit à l'humanité, tels que la régulation du climat et la fourniture de 

ressources alimentaires et médicinales. 
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Dans ce contexte, l'établissement d’une méthode de cartographie précise des 

zones touchées par ces dépérissements permettrait de quantifier ce phénomène, son 

évolution et potentiellement d’en identifier les causes. Pour se faire, la télédétection, en 

particulier à l'aide des images Sentinel-2, constitue un outil précieux en permettant de 

surveiller de vastes zones forestières. La méthodologie adoptée dans cette étude repose 

sur l'utilisation d'algorithmes de Machine Learning, notamment la méthode de 

classification Random Forest, pour analyser les images Sentinel-2. Cette approche inclut 

les étapes de prétraitement des données, production d’indices de végétation et 

spectraux, classification des images, validation des résultats à l’appui des acquisitions 

Pléiades.  

L'objectif principal ici est d’exploiter le potentiel de la télédétection par imagerie 

Sentinel-2 pour fournir une cartographie détaillée des zones de dépérissement forestier 

en Guyane Française. Ceci permettrait de mieux comprendre les dynamiques spatiales 

et temporelles de ces phénomènes et d’investiguer les causes possibles du 

dépérissement. A terme la poursuite de ces travaux permettrait de proposer des solutions 

de gestion et de restauration des zones affectées. 

 

Les dépérissements forestiers 

Historique et définition 

Les dépérissements forestiers ne sont pas des phénomènes nouveaux, ils sont 

documentés depuis plusieurs siècles et leur définition a connu différentes évolutions. 

Landmann (1994) rapporte la définition de Mueller-Dombois (1986) du dépérissement tel 

qu'un phénomène de sénescence collective synchrone entraînée par une perturbation 

soudaine. Cette définition évolue ensuite pour prendre en compte la multiplicité 

potentielle des facteurs de dépérissement jusqu’à être caractérisé par un ensemble 

d'anomalies perceptibles à l'œil sur le terrain, telles que la mortalité ou la réduction de la 

qualité et de la quantité de feuillage (Delatour, 1990 ; Landmann, 1994). Delatour (1990) 

apporte aussi une prise en compte de l’évolution au cours du temps du phénomène qui 

traduit le fait que l'issue naturelle pour l'arbre dépérissant est jugée problématique mais 

pas obligatoirement fatale. Cette définition semble être en accord avec la définition 

contemporaine qui décrit une dégradation progressive de l'état de santé d'une forêt 

entraînant le plus souvent la mort des arbres nécessitant une intervention rapide : 

surveillance renforcée, exploitation des arbres malades...  (ONF, 2023). 

Landmann (1994) distinguait trois grands types de facteurs intervenant dans les 

dépérissements : les facteurs prédisposants contribuant à l'affaiblissement général de 

l'arbre au long terme dont le changement climatique est un exemple ; les facteurs 

déclenchants agissant de façon intense sur une relativement courte période (ex : 

sécheresse, insectes défoliateurs) et les facteurs aggravants accentuant la perturbation 

(facteurs biotiques, champignons ou insectes). Dans la littérature scientifique 

https://www.zotero.org/google-docs/?64TmEv
https://www.zotero.org/google-docs/?XWV4Yo
https://www.zotero.org/google-docs/?AGarTP
https://www.zotero.org/google-docs/?AGarTP
https://www.zotero.org/google-docs/?AGarTP
https://www.zotero.org/google-docs/?g2Yqm5
https://www.zotero.org/google-docs/?4Kl2fr
https://www.zotero.org/google-docs/?oPU8bc
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contemporaine, il semble que cette distinction ne soit plus d’actualité, les dépérissements 

liés aux parasites et aux sécheresses semblent être les plus récurrents, ils sont en tous 

cas les plus documentés (ONF, 2023 ; Torres et al., 2021).  

Facteurs contribuant aux dépérissements en Amazonie 

Les dépérissements en Guyane, et plus largement en Amazonie, peuvent eux 

aussi être dus à différents facteurs souvent interconnectés. Parmi eux, reviennent le plus 

souvent des facteurs abiotiques en lien avec le changement climatique tels que :  

● Les épisodes de sécheresse, à eux seuls ou accompagnés de facteurs tels que 

les incendies de forêt et fortement influencés par l'ENSO (El Niño–Southern 

Oscillation) (Allen et al., 2017 ; Jump et al., 2017 ; McDowell, Allen and Anderson-

Texeira, 2018). Costa et al., (2023) indiquent que les forêts où la nappe phréatique 

est peu profonde peuvent être plus résilientes face à des sécheresses d'intensité 

moyenne, mais pourraient être plus sensibles lors de sécheresses importantes. 

De manière plus générale, l'augmentation du stress hydrique jusqu'à un certain 

seuil (Cf. Figure 2 ci-dessous) pourrait, d'ici 2050, entraîner un changement 

d'écosystème pour 10% à 47% des forêts amazoniennes (Flores et al., 2024).  

 

Figure 2 : Facteurs de stress hydrique sur la forêt amazonienne, leurs seuils critiques, 

limites de sécurité (a) et interactions (b) (Flores et al., 2024). 

 

Dans ce scénario, les trois écosystèmes résultants pourraient être : des savanes 

de sable blanc, des canopées ouvertes dégradées, ou des forêts dégradées, selon les 

conditions environnementales et d'autres facteurs (Flores et al., 2024). 

Les précipitations et l’engorgement des sols sont aussi mis en avant comme 

facteurs de dépérissement. En effet, Laurance et al., (2009) rapportent que la mortalité 

des arbres atteint son pic pendant les périodes anormalement humides, au cours 

desquelles le recrutement et la croissance des arbres diminuent. Les inondations peuvent 

provoquer une mortalité locale des arbres indépendamment de leur taille (Laurance et 

https://www.zotero.org/google-docs/?ZRHF3b
https://www.zotero.org/google-docs/?0E9Ifp
https://www.zotero.org/google-docs/?0E9Ifp
https://www.zotero.org/google-docs/?WqWcpX
https://www.zotero.org/google-docs/?PudHlU
https://www.zotero.org/google-docs/?sZCp7P
https://www.zotero.org/google-docs/?o7UNMe
https://www.zotero.org/google-docs/?0MeOAA
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al., 2009). D'autre part, les forêts tropicales et les savanes peuvent représenter des états 

stables alternatifs dans certaines conditions environnementales. Le double stress causé 

à la fois par la sécheresse et l'engorgement en eau favorise la transition vers des 

écosystèmes de savanes (Mattos et al., 2023). De même, les conclusions de Staal et al., 

(2016) suggèrent que les modifications des schémas de précipitations pourraient 

entraîner des déplacements spatiaux des limites entre les forêts et les savanes lorsque 

des seuils critiques sont approchés. Ces seuils sont définis par 1760 mm de précipitations 

annuelles moyennes et un indice de saisonnalité de Markham* (MSI) de 50 %, 

correspondant à une distribution de la totalité des précipitations annuelles sur 6 mois et 

calculé comme suit :  

 

 

(Staal et al., 2016). 

 

Ces épisodes de sécheresse ou de précipitations intenses, favorables au 

dépérissement forestier en Amazonie ont lieu dans un contexte d’oscillation climatiques 

interannuelles connues sous le nom de El Niño Southern Oscillation (ENSO). L’ENSO 

est un phénomène climatique naturel à grande échelle qui se caractérise par des 

fluctuations de la température de l’océan (El Niño et La Niña), ainsi que par des 

changements dans l’atmosphère sus-jacente (oscillation australe) (El Niño-oscillation 

australe (ENSO), no date). Les variations des précipitations et de la température induites 

par l'ENSO se produisent selon des cycles irréguliers de 2 à 7 ans et joueraient un rôle 

plus important dans les activités végétales des forêts tropicales que le rayonnement 

solaire en surface (Nagai, Ichii and Morimoto, 2007). Zemp et al. (2017) soulignent que 

ces perturbations ont le potentiel de déstabiliser de vastes portions de la forêt 

amazonienne, notamment en favorisant la mise en place une boucle de rétroaction 

positive basée sur les interactions entre la végétation et l'atmosphère. 

Outre les impacts climatiques directs, des facteurs liés aux changements globaux, 

tels que l'augmentation du CO2 atmosphérique, peuvent également influencer la santé 

des écosystèmes forestiers amazoniens. Par exemple, l'augmentation du CO2 peut 

induire une fertilisation qui entraîne un éclaircissement des peuplements ou une 

accélération de la croissance des arbres, les amenant à atteindre des hauteurs plus 

importantes et donc plus vulnérables (McDowell et al., 2018). L'incertitude associée aux 

effets à long terme du CO2 est beaucoup plus grande que celle associée aux 

changements de précipitations (Rammig et al., 2010). Ce qui souligne que l’importance 

des effets directs du CO2 sur les écosystèmes tropicaux est assez méconnue.  

Enfin, d’autres facteurs peuvent contribuer à une surmortalité localisée des arbres 

en forêt tropicale humide tels que les feux de forêts, le vent, les agents biotiques et les 

lianes bien que leur part relative dans les dépérissements des forêts tropicales humides 

et leurs interactions soient sous-étudiées (McDowell et al., 2018).  

https://www.zotero.org/google-docs/?0MeOAA
https://www.zotero.org/google-docs/?1oxnM2
https://www.zotero.org/google-docs/?CwJTBd
https://www.zotero.org/google-docs/?CwJTBd
https://www.zotero.org/google-docs/?5VFEg4
https://www.zotero.org/google-docs/?tb9K7W
https://www.zotero.org/google-docs/?mvStwF
https://www.zotero.org/google-docs/?UHB61E
https://www.zotero.org/google-docs/?UMsfCt
https://www.zotero.org/google-docs/?UMsfCt
https://www.zotero.org/google-docs/?UMsfCt
https://www.zotero.org/google-docs/?4G9NF1
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Détection et cartographie des dépérissements forestiers 

La télédétection se réfère à la technique d'observation et de collecte de données 

à distance, souvent à partir de satellites ou de plateformes aéroportées, sans qu'il soit 

nécessaire d'entrer en contact direct avec la zone étudiée. Utile dans l’étude des 

dépérissements forestiers, elle se concentre principalement sur l'observation de la 

défoliation et du brunissement de la canopée et offre un avantage majeur grâce à la 

possibilité d'acquérir de manière répétée des informations standardisées sur de vastes 

zones pour un faible coût et avec une haute fréquence (Pause et al., 2016). La recherche 

tend à se focaliser sur les dépérissements associés à des facteurs de stress spécifiques, 

tandis qu'un nombre limité d'études cherchent à établir des dispositifs d'alerte précoce. 

De plus, bien que les forêts tropicales occupent une grande partie des terres forestières 

de la planète et abritent une grande biodiversité, elles sont sous-représentées dans la 

littérature scientifique (Torres et al., 2021). Cette sous-représentation peut être attribuée 

à la forte couverture nuageuse présente une grande partie de l'année dans ce biome, ce 

qui limite la possibilité de mener des études utilisant des méthodes optiques qui sont 

pourtant souvent privilégiées. Néanmoins, la technologie radar peut offrir de meilleures 

performances dans de telles conditions, mais elle est rarement appliquée dans les 

biomes tropicaux (Torres et al., 2021). 

Données in situ 

Des données terrains sont fréquemment utilisées pour valider et affiner les 

observations obtenues par télédétection dans le cadre de la détection des 

dépérissements forestiers. Elles peuvent concerner directement les arbres et leur état 

voire leur degré de dépérissement qui s’exprime le plus souvent par l’importance de la 

défoliation (Akashi and Mueller-Dombois, 1995; Dezzeo, Hernández and Fölster, 1997; 

Pontius, 2014; Bhattarai et al., 2020) ou se concentrer sur les facteurs de stress dont la 

part de responsabilité vis-à-vis du dépérissement est étudiée (ex. données météo)(Pau, 

Okin and Gillespie, 2010). 

Cependant, l'accès et l'utilisation des données terrain peut présenter des défis, 

notamment en lien avec leur qualité (méthode d'échantillonnage ou disponibilité spatiale) 

; leur quantité (disponibilité spatiale et temporelle) les restrictions politiques et 

commerciales sur la disponibilité des données (Pause et al., 2016). Considérant ces 

difficultés, qui peuvent être exacerbées dans des environnements forestiers denses 

comme ceux de la Guyane française, certaines études développent une méthodologie 

qui tente de s'affranchir de l'utilisation de données terrain (Spruce et al., 2011) ou les 

complètent via l'utilisation de données issues de capteurs aéroportés (Huete et al., 2002). 

 

https://www.zotero.org/google-docs/?ArEobh
https://www.zotero.org/google-docs/?V0wpv6
https://www.zotero.org/google-docs/?wZ0W98
https://www.zotero.org/google-docs/?GCR8KI
https://www.zotero.org/google-docs/?GCR8KI
https://www.zotero.org/google-docs/?GCR8KI
https://www.zotero.org/google-docs/?GCR8KI
https://www.zotero.org/google-docs/?V1aBGa
https://www.zotero.org/google-docs/?V1aBGa
https://www.zotero.org/google-docs/?l7VP9x
https://www.zotero.org/google-docs/?9q2XHa
https://www.zotero.org/google-docs/?BlXehU
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Données de télédétection 

1.Vecteurs  

Les capteurs embarqués sur des vecteurs aéroportés (pilotés ou non) et sur des 

plates-formes terrestres fournissent des données à résolution spatiale souvent plus 

élevées que les données satellitaires. Cependant, ils sont davantage limités en termes 

de couverture spatiale et temporelle et sont généralement plus coûteux. Bien que leur 

utilisation ne soit pas prédominante dans ce domaine, elle est en augmentation (Torres 

et al., 2021). 

D’autre part, les acquisitions satellitaires se démarquent en raison de leur 

couverture spatiale exhaustive, de leur catalogue de données historiques, ainsi que par 

la résolution spatiale élevée de certaines d'entre elles. L'accès libre à un grand nombre 

de ces données et leur pertinence dans l’évaluation de différents paramètres de santé 

des forêts, en font les plus couramment utilisées (Torres et al., 2021). 

2. Capteurs  

Les capteurs optiques (passifs ou LiDAR) fournissent des informations pertinentes 

pour l’étude des dépérissements forestiers, mais leur capacité à pénétrer à travers le 

couvert est limitée par la nébulosité, notamment en zone tropicale. Les capteurs 

multispectraux ont cependant démontré leur potentiel pour évaluer des indicateurs de 

santé des forêts tels que le contenu en eau, la décoloration des feuilles, l'indice de surface 

foliaire et le contenu en pigments, et sont les plus utilisés dans ce domaine d’étude 

(Pontius, 2014 ; Bhattarai et al., 2020 ; Cavender-Bares, Gamon and Townsend, 2020 ; 

Gonçalves et al., 2020 ; Torres et al., 2021). Plusieurs zones du spectre 

électromagnétique sont importantes pour l'étude de la végétation et en particulier des 

dépérissements forestiers  (Cavender-Bares, Gamon and Townsend, 2020 ; Torres et al., 

2021): 

- La région visible (0,4–0,7 μm), où la végétation présente une faible réflectance 

due à l'absorption de la lumière par les pigments.  

- À la frontière entre la région visible et le proche infrarouge se trouve le bord rouge, 

particulièrement pertinent pour estimer le contenu en chlorophylle et en azote de 

la végétation, car il marque la transition entre l'absorption élevée de la chlorophylle 

dans le rouge et l'absorption faible dans le proche infrarouge (NIR). 

- La région proche infrarouge (NIR 0,7–1,2 μm) présente des valeurs de réflectance 

plus élevées pour la végétation, notamment en raison de la structure cellulaire des 

feuilles. 

- Enfin, le moyen infrarouge est divisé en infrarouge à ondes courtes ou SWIR (1,2–

2,5 μm) et moyen infrarouge (2,5–8 μm). Le SWIR présente un potentiel 

d'utilisation dans la mesure du contenu en humidité, notamment grâce à ses 

caractéristiques d'absorption et de réflectance spécifiques. 

https://www.zotero.org/google-docs/?iYqm8J
https://www.zotero.org/google-docs/?iYqm8J
https://www.zotero.org/google-docs/?T0PCUh
https://www.zotero.org/google-docs/?8SS2Ol
https://www.zotero.org/google-docs/?8SS2Ol
https://www.zotero.org/google-docs/?MSF0Ew
https://www.zotero.org/google-docs/?MSF0Ew
https://www.zotero.org/google-docs/?MSF0Ew
https://www.zotero.org/google-docs/?MSF0Ew
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 Les informations contenues dans ces différents domaines du spectre 

électromagnétique sont souvent utilisées pour évaluer des caractéristiques telles que 

l'abondance et la couleur des feuilles ainsi que l'humidité de la canopée. Le NDVI 

(Normalized Difference Vegetation Index) est l'un des indices les plus couramment 

utilisés à cette fin. Cependant, il présente des limitations importantes dans les 

environnements de végétation dense comme la forêt amazonienne en raison de la 

saturation qui se produit lorsque la valeur de l'indice atteint un certain seuil au-delà duquel 

sa capacité à différencier les niveaux de biomasse n’est plus assurée. (Huete et al., 2002 

; Pau, Okin and Gillespie, 2010). Pour remédier à ce problème, d'autres indices tels que 

l'EVI (Enhanced Vegetation Index), le kNDVI, et d'autres encore, ont été proposés 

(Camps-Valls et al., 2021). De manière plus générale, des études ont été menées pour 

développer et tester des indices de végétation et d'humidité reflétant des paramètres 

spécifiques du couvert végétal utiles à la télédétection des dépérissements forestier tels 

que l'indice de surface foliaire (LAI) et la teneur en chlorophylle et en caroténoïdes foliaire 

(Pontius, 2014; Bhattarai et al., 2020; Gonçalves et al., 2020; Moreno-Fernández et al., 

2021). Le tableau ci-dessous (Fig. 3) presence de manière non exhaustive des indices 

spectraux pouvant permettre ou faciliter la détection des dépérissements en forêt 

tropicale humide.  

Figure 3 : Synthèse des indices utilisés pour la classification des dépérissements 

forestiers en milieu tropical à partir de l’imagerie Sentinel-2 

Indice Formule Caractéristiques References 

Aoki (Aoki Index) B3 / B8 Taux de chlorophile (Pontius, 2014) 

CARI (Chlorophyll 
Absorption Ratio 
Index) B5 / B3 - 1 

Humidité de la 
canopée, LAI(leaf area 
index), biomasse totale (Huang et al., 2018)  

CSI (Canopy 
Structure Index) 

2.5 * ((B8 - B5) / (B8 
+ B5)) * (B2 / B5)  (Zhang et al., 2022)  

EVI (Enhanced 
Vegetation Index) 

2.5 * (B8 - B4) / (B8 
+ 6 * B4 - 7.5 * B2 + 
1) 

Couverture de la 
canopée,verdure 

(Moreno-Fernández et al., 2021) 
(Gonçalves et al., 2020) (Cavender-
Bares, Gamon and Townsend, 
2020), (EVI (Enhanced Vegetation 
Index) | Sentinel Hub custom 
scripts) 

GCC (Green 
Chromatic 
Coordinate) B2 / (B4 + B3 + B2) 

Abondance des feuilles 
de moins d'un mois (Gonçalves et al., 2020) 

IRECI (Inverted 
Red-Edge 
Chlorophyll Index) (B7 - B4) * (B6 / B5) Défoliation légère (Bhattarai et al., 2020) 

kNDVI (Kernel 
Normalized 
Difference 
Vegetation Index) 

tanh(((B8 + B4) / (B8 
- B4))^2) 

Verdure, et robuste au 
problème de saturation 
du NDVI (Camps-Valls et al., 2021) 

https://www.zotero.org/google-docs/?f4Kkey
https://www.zotero.org/google-docs/?f4Kkey
https://www.zotero.org/google-docs/?KeC6fH
https://www.zotero.org/google-docs/?EMr7uB
https://www.zotero.org/google-docs/?EMr7uB
https://www.zotero.org/google-docs/?jYj6Rz
https://www.zotero.org/google-docs/?RnZjn1
https://www.zotero.org/google-docs/?eyr6HC
https://www.zotero.org/google-docs/?eyr6HC
https://www.zotero.org/google-docs/?eyr6HC
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MCARI (Modified 
Chlorophyll 
Absorption in 
Reflectance Index) 

((B5 - B4) - 0.2 * (B5 
- B3)) * (B5 / B4) Défoliation légère (Bhattarai et al., 2020), (Sinergise)  

MCARI2 (Modified 
Chlorophyll 
Absorption in 
Reflectance Index 
2) 

1.5 * ((2.5 * (B8 - 
B4)) - (1.3 * (B8 - 
B3))) / sqrt(((2 * B8 + 
1)^2) - (6 * B8 - 5 * 
(B4^2) - 0.5)) LAI (Pontius, 2014) 

MSR (Modified 
Simple Ratio) 

((B7 / B4) - 1) / 
sqrt((B7 / B4) + 1) Défoliation légère (Bhattarai et al., 2020) 

NDII11 (Normalized 
Difference Infrared 
Index 11) 

(B8A - B11) / (B8A + 
B11) Défoliation légère (Bhattarai et al., 2020) 

NDMI (Normalized 
Difference Moisture 
Index) 

(B8 - B11) / (B8 + 
B11) 

Déclin de la végétation 
en période de 
sécheresse  (Moreno-Fernández et al., 2021) 

NDVI (Normalized 
Difference 
Vegetation Index) (B8 - B4) / (B8 + B4) Verdure 

(Moreno-Fernández et al., 2021) 
(Camps-Valls et al., 2021), (Spruce 
et al., 2011) 

NBR (Normalized 
Burn Ratio) 

(B8A - B12) / (B8A + 
B12) 

Déclin de la végétation 
en lien avec la 
sécheresse  (Losso et al., 2022) 

RARSc (Red-Edge 
Atmospheric 
Resistant Stress 
Index) B7 / B2  (Scheel, 2018)  

SAVI (Soil Adjusted 
Vegetation Index) 

(B8 - B4) / (B8 + B4 
+ 0.5) * (1 + 0.5) Verdure (Moreno-Fernández et al., 2021) 

TCW (Tasseled 
Cap Wetness) 

0.1511 * B2 + 
0.1973 * B3 + 
0.3283 * B4 + 
0.3407 * B8 - 0.7117 
* B11 - 0.4559 * B12 

Déclin de la végétation 
en période de 
sécheresse  (Moreno-Fernández et al., 2021) 

 

Parmi les capteurs et plates-formes capables d'obtenir des informations à ces 

longueurs d'onde, on trouve Landsat, MODIS, le MSI de Sentinel-2, Worldview et 

RapidEye, ainsi que des capteurs hyperspectraux comme AVIRIS. Malgré la meilleure 

résolution temporelle et spatiale des images de Sentinel-2, Landsat reste la mission 

satellitaire la plus employée dans ce type d'étude en raison de la plus grande couverture 

temporelle des acquisitions (Torres et al., 2021). On peut aussi mentionner les capteurs 

de très haute résolution spatiale, avec leur couverture limitée par image (10 à 20 km de 

largeur) qui conviennent donc uniquement à la cartographie locale et régionale (Lausch 

et al., 2016).  

D’autre part, les capteurs actifs se révèlent très utiles pour étudier la structure de 

la forêt à l'intérieur et sous la canopée, du fait de leur capacité à y pénétrer (contrairement 

aux capteurs passifs). Le SAR (Synthetic-aperture radar) peut fonctionner par temps 

https://www.zotero.org/google-docs/?Zy0mcX
https://www.zotero.org/google-docs/?9A8o4H
https://www.zotero.org/google-docs/?FHChBc
https://www.zotero.org/google-docs/?VPp3N0
https://www.zotero.org/google-docs/?VPp3N0
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nuageux, ce qui n'est pas possible avec les capteurs optiques ou le LiDAR. Il est aussi 

sensible au stress hydrique et peut mettre en évidence la mortalité des arbres après des 

sécheresses sévères (van Emmerik et al., 2017; Saatchi et al., 2013). Malgré tout, le 

potentiel des capteurs SAR dans ce domaine reste largement inexploité (Torres et al., 

2021).  Enfin, le LiDAR peut permettre de cartographier les arbres morts à l'échelle d'une 

parcelle. L'intégration des données LiDAR avec des données optiques multi- et 

hyperspectrales peut considérablement améliorer ces performances (Bright et al., 2014 ; 

Lausch et al., 2016), ce qui est d’ailleurs valable en général pour l’intégration de données 

de différents vecteurs et/ou capteurs. En effet, plusieurs études explorent l'association de 

données provenant de différentes plates-formes ou capteurs pour tirer parti de leurs 

forces respectives (Pontius, 2014 ; Gonçalves et al., 2020).  

 

Méthodes d'analyse des images 

L'approche pixel, se base sur l'analyse de chaque pixel individuellement, elle est 

privilégiée pour son efficacité à offrir une vision d'ensemble des caractéristiques dans 

une image, à toutes les échelles (Pau, Okin and Gillespie, 2010; Garrity et al., 2013; 

Bright et al., 2014). D’autre part, l’approche objet qui se concentre sur les objets ou les 

structures dans une image, est utilisée de manière plus ciblée, notamment lorsque 

l'identification précise d'objets individuels est cruciale, et que des données à très haute 

résolution spatiale sont utilisées (Gonçalves et al., 2020; Torres et al., 2021). 

Marginalement, Berveglieri et al. (2021) ont appliqué une approche par superpixel, 

regroupant des ensembles de pixels cohérents en entités uniques, pour simplifier la 

complexité des données dans l'analyse des tendances et des changements dans les 

trajectoires de succession des forêts tropicales à partir de séries temporelles d'images 

Landsat. 

En fonction de la perspective et de l'approche de l'étude, des méthodes 

quantitatives (fournissant des données continues) ou qualitatives (fournissant le degré de 

dommage) sont utilisées. Selon l'approche choisie, différentes techniques de 

modélisation sont sélectionnées. La classification est utilisée dans les études qualitatives, 

tandis que la régression est plutôt utilisée pour une représentation quantitative des 

dépérissements (Dezzeo, Hernández and Fölster, 1997; Pontius, 2014; Bhattarai et al., 

2020; Fremout et al., 2022). D'autres études utilisent l'analyse de corrélation, une 

approche physique (l'inversion des modèles de transfert radiatif) ou l'analyse de séries 

temporelles (Torres et al., 2021). 

Un point notable est l'essor des études intégrant des techniques de Machine 

Learning (ML), où le Random Forest (RF) est l’algorithme prédominant, tant comme 

classificateur que comme algorithme de régression (Cavender-Bares, Gamon and 

Townsend, 2020; Torres et al., 2021). Le RF présente plusieurs avantages qui expliquent 

sa popularité. Il peut traiter des paramètres d'entrée de différents types, gérer de grands 

https://www.zotero.org/google-docs/?9Di4kk
https://www.zotero.org/google-docs/?sqoQ8Z
https://www.zotero.org/google-docs/?HUqMjr
https://www.zotero.org/google-docs/?oXblWm
https://www.zotero.org/google-docs/?oXblWm
https://www.zotero.org/google-docs/?NA6KYz
https://www.zotero.org/google-docs/?NA6KYz
https://www.zotero.org/google-docs/?bLGPIE
https://www.zotero.org/google-docs/?0aJ6YN
https://www.zotero.org/google-docs/?0aJ6YN
https://www.zotero.org/google-docs/?0Hnvd6
https://www.zotero.org/google-docs/?87K2Ea
https://www.zotero.org/google-docs/?87K2Ea
https://www.zotero.org/google-docs/?87K2Ea
https://www.zotero.org/google-docs/?feUVoR
https://www.zotero.org/google-docs/?feUVoR
https://www.zotero.org/google-docs/?4LHCCu
https://www.zotero.org/google-docs/?h16rWG
https://www.zotero.org/google-docs/?h16rWG
https://www.zotero.org/google-docs/?h16rWG
https://www.zotero.org/google-docs/?h16rWG


10 
 

ensembles de variables avec des interactions complexes (bien que les corrélations entre 

les variables et l'autocorrélation spatiale puissent affecter la précision des résultats), 

modéliser des relations complexes entre différentes variables et permettre de déterminer 

l'importance des variables prédictives (Lausch et al., 2016; Torres et al., 2021). Ces 

caractéristiques offrent une interprétation plus transparente de la structure du modèle et 

de la sensibilité des variables par rapport à d'autres méthodes ML, telles que les réseaux 

neuronaux artificiels (Lausch et al., 2016). D’autre part, des études ont montré la 

supériorité du RF par rapport aux SVM (Support Vector Machine), autre modèle de ML 

utilisé pour la classification et la régression dans la construction de modèles (Bhattarai et 

al., 2020).  

Dobrinić et al. (2022) ont mis en avant les bonnes performances du MDA (Mean 

Decrease Accuracy) pour la sélection des variables dans un RF. En effet, cette méthode 

de sélection de variables donnait la meilleure précision avec le moins de variables 

possible parmi cinq méthodes de sélection étudiées, dont l'indice de Gini. 

Enfin, L'analyse des séries temporelles d'images satellites permet d’améliorer ou 

de faciliter le suivi de l'évolution des dépérissements forestiers. D'une part, cette 

approche permet une surveillance quasi-temps réel sans nécessiter une collecte 

intensive de données sur le terrain comme précurseur (Spruce et al., 2011). D’autre part, 

les algorithmes BFAST (Breaks For Additive Seasonal and Trend) et BEAST (Bayesian 

Estimator of Abrupt change, Seasonal change, and Trend) sont utilisé pour détecter les 

changements brusques dans les séries temporelles avec des composantes saisonnières 

et de tendance (Berveglieri et al., 2021; Moreno-Fernández et al., 2021). Ces deux outils 

fournissent des moyens efficaces pour analyser les séries temporelles et comprendre les 

changements environnementaux, notamment dans la gestion des écosystèmes 

forestiers. 

 

En somme, les dépérissements forestiers en Amazonie, tels que ceux observés 

en Guyane, résultent de divers facteurs interconnectés, notamment le changement 

climatique, les épisodes de sécheresse et les perturbations liées à l'ENSO. La 

télédétection, combinant des données satellites et des capteurs aéroportés, offre une 

approche efficace pour la cartographie et la surveillance de ces phénomènes. L'analyse 

des images, soutenue par des méthodes quantitatives et des techniques d'apprentissage 

automatique telles que le RF , permet de comprendre et de quantifier ces 

dépérissements, offrant ainsi des perspectives pour une gestion plus efficace des 

écosystèmes forestiers.  

https://www.zotero.org/google-docs/?iU7b4j
https://www.zotero.org/google-docs/?iU7b4j
https://www.zotero.org/google-docs/?iU7b4j
https://www.zotero.org/google-docs/?iU7b4j
https://www.zotero.org/google-docs/?iU7b4j
https://www.zotero.org/google-docs/?CGqsbs
https://www.zotero.org/google-docs/?7q6Gvd
https://www.zotero.org/google-docs/?7q6Gvd
https://www.zotero.org/google-docs/?st2pwg
https://www.zotero.org/google-docs/?hW453V
https://www.zotero.org/google-docs/?pz0L9C
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Matériel et méthode  

Données 

Ce travail s’est appuyé sur des images Sentinel 2 et Pléiades, respectivement des 

acquisitions optiques satellitaires de haute et très haute résolution spatiale (Cf. Figure 4).  

Les images Sentinel 2 utilisées étaient corrigées au niveau L2A et toutes les 

bandes utilisées, rééchantillonnées par interpolation bilinéaire, à la résolution la plus fine 

soit 10m. Les bandes 1 (Coastal aérosol) et 9 (vapeur d’eau) à une résolution de 60m ont 

été laissée de côté en raison de leur faible intérêt dans le contexte d’étude et de leur 

résolution, trop large, pour l’objectif poursuivi ici.  

Les bandes du rouge, vert, bleu et infrarouge (R, G, B et IR) des images Pléiades 

ont une résolution spatiale initiale de 2 mètres, mais ont été rééchantillonnées à 0,5m par 

pansharpening à partir de la bande panchromatique. 

 

Figure 4 : Caractéristiques des bandes Sentinel-2 et Pléiades 

 
 

Domaine 
spectral 

Sentinel-2 Pléiades 

Bande Longueur 
d’onde 
(nm) 

Résolution 
spatiale (m) 

Bande Longueur 
d’onde 
(nm) 

Résolution 
spatiale (m) 

Bleu B2 448-546 10 B1 430-550 2 

Vert B3 537-582 10 B2 490-610 2 

Rouge B4 645-713 10 B3 600-720 2 

Vegetation 
Red Edge 

B5 
B6 
B7 
B8A 

694-713 
731-749 
768-796 
848-881 

20 
20 
20 
20 

 
- 

Proche infra-
rouge (NIR) 

B8 763-908 10 B4 750-950 2 

Visible  -  P                450-800         0.5  

Infra-rouge à 
ondes 
courtes 
(SWIR) 

B11 
B12 

1542-1757 
2081-2323 

20 
20 

 
- 

 

L’objectif premier étant ici de produire une cartographie précise des 

dépérissements observés à partir de mai 2022, les images utilisées pour calibrer le 

modèle ont été celles acquises en 2023. Pour cette année, davantage de données très 

haute résolution Pléiades, permettant la constitution d’un jeu de donnée, étaient 

disponibles (Cf. Figure 5). De plus, c’est sur les images de cette année que le phénomène 

de dépérissement est plus visible. Le modèle entraîné sur 2023 a ensuite été utilisé pour 

produire une classification pour 2020 et 2024. Les dépérissements survenus aux abords 

de la Réserve Nationale (RNN) de la Trinité et de la Réserve Biologique Intégrale (RBI) 
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de Lucifer/Dékou-Dékou regroupant notamment des groupements végétaux 

patrimoniaux ont été ciblées pour être les zones à cartographier en priorité en raison des 

forts enjeux qu’ils soulèvent. Ainsi, l’acquisition d’images Pléiades a d’abord été 

commandée dans ces zones. La tuile Sentinel-2 T21NZF, se superposant avec la plupart 

des images Pléiades disponibles (Cf. Figure 5) et avec les zones d’intérêt, a été retenue 

pour l’entraînement du RF. Les tuiles permettant de recouvrir intégralement la RNN de la 

Trinité ont ensuite fait l’objet d’une classification à partir du RF entraîné sur la T21NZF. 

Figure 5 : Localisation et dates d’acquisition des images Pléiades et Sentinel-2 utilisées 

 

Méthodologie 

Plusieurs étapes sont nécessaires à l’établissement d’une cartographie des zones 

dépérissantes à partir de l’imagerie Sentinel-2. Dans un premier temps, différents indices 

de végétation ont été sélectionnés et calculés dans l’objectif d’enrichir l’information 

spectrale contenue dans les images Sentinel-2. Les indices retenus ici sont recensés 

dans le tableau ci-dessus (Cf. Figure 3). 

Il a semblé pertinent de simplifier l’information contenue dans les images en 

masquant, dans un premier temps, les nuages et les ombres et, dans un second temps, 

le reste des objets ne correspondant pas à la forêt. En effet, cette étape du traitement 

Pléiades 

A 21/09/2023 

B 08/09/2023 

C 09/10/2023 

D 23/07/2024 

Sentinel-2 

T21NZF 16/10/2020 
06/09/2023 
28/02/2024 

T22NBL 13/09/2020 
08/10/2023 
29/06/2024 

T21NZE 16/10/2020 
06/09/2023 
28/02/2024 

T22NBK 23/10/2020 
08/10/2023 
29/06/2024 
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permet de limiter la quantité de données à analyser pour la classification des 

dépérissements et peut permettre d'améliorer la précision, de réduire le bruit dans le 

résultat obtenu et de sélectionner les variables les plus pertinentes pour l'objectif 

spécifique. Pour ce faire, une même méthodologie utilisant l'algorithme RF a été 

appliquée, méthode décrite ci-dessous qui a ensuite été utilisée pour classifier les zones 

de forêt. 

 

La constitution du jeu de données a été réalisée par photo-interprétation sur des 

zones délimitées, situées dans l’emprise de la tuile Sentinel-2 T21NZF depuis des 

compositions colorées vraies couleurs à partir des images Sentinel-2 pour le masque 

nuages et le masque forêt tandis qu’elle s’est basée sur des compositions colorées vraies 

et fausse couleurs issues des images Pléiades pour la classification des dépérissements.  

 

Description de la démarche pour la photo-interprétationdes dépérissements 

Les groupes de pixels de couleur brun/rosé sur la composition colorée vraie couleur ont 

été classés comme dépérissements. En cas de doute, l’observation sur la composition colorée 

fausse couleur (R : Vert, G : Rouge, B : IR) d’une teinte jaune-marron pour ces mêmes pixels 

confirmait l’attribution du groupe de pixel (sous forme de polygone) à la classe dépérissements. 

Les polygones de la classe forêt (soit forêt saine) sont tous des cercles de rayon 20m, après 

plusieurs essais, une partie d’entre eux a été placée en cœur de zone saine et d’autre aux abords 

des zones dépérissantes pour moduler la sensibilité de l’algoritme. Ici, l’objectif était de réduire 

autant que possible les faux positifs, quite à augmenter sensiblement la prévalence de faux 

négatifs.  

 

La photo-interpretation a été effectuée tout en veillant à ce que les polygones 

générés aient des tailles relativement homogènes. Dans le cas où la classe avec les plus 

petits polygones présentait un nombre médian de pixels par polygone inférieur à 10, alors 

un échantillonnage aléatoire sans remise de n pixels par polygone a été mené. Le nombre 

n est choisi de manière à maximiser le coefficient Kappa, avec n le plus petit en cas d'ex-

æquo. Lorsque le nombre médian de pixels par polygone est supérieur ou égal à 10, n 

est défini comme le nombre de pixels du plus petit polygone, et n pixels sont alors 

échantillonés par polygone. Seul le jeu de données destiné à la classification des 

dépérissements forestiers a fait l’objet d’une détermination de n au regard du coefficient 

Kappa, en effet les dépérissement sont la seule classe pour laquelle la médianne du 

nombre de pixels par polygones était inférieure à 10. Sans cela, pour atteindre un nombre 

de pixels échantillonnés assez conséquent il aurait fallu augmenter massivement le 

nombre de polygones produits, leur taille étant limitée par l’étendue des dépérissements. 
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   Les graphiques ci-dessous (Fig. 6) permettent d’observer les signatures 

spectrales des différents groupes de polygones générés pour la consitution des différents 

jeux de données.  

Figure 6 : Profils et indices spectraux des différents objets classifiés 

 

 

 

 

 

 

 

 

 

 

 

 

A : Autres modalités d’occupation du sol ; D : Dépérissements ; F : Forêt Saine ; N : Nuages, 

O : Ombres 

 

On observe sur la figure 6 une forte réflectance des dépérissements dans le visible 

et dans l'infrarouge à ondes courtes (B11), et une plus faible réflectance dans le domaine 

du Red Edge (B6 et B8A), là où la forêt saine présente des valeurs de réfléctance les 

plus fortes. Sans surprise, la classe comprenant les autres modalités d’occupation du 

sol présente des valeurs plutôt moyennes, cette classe présente aussi des écarts types 

plus importants du fait de la diversité des objets qu’elle peut comprendre (ex : routes, 

zones de culture, végétation basse, zones d’activité minière, etc.), ceci met en avant la 

nécéssité d’utiliser un masque forêt performant pour faciliter la classification forêt 

saine/dépérissements.  

Classes    
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Du coté des indices spectraux (Fig. 6) on peut noter que le NDII11 semble pouvoir 

permettre de distinguer la plupart des objets ciblés ici, dans une moindre mesure cette 

observation semble aussi pouvoir s’appliquer au MCARI2. Ces indices sont 

respectivements mis en avant pour la détection de défoliation légère et comme proxy du 

LAI.  

Après l'échantillonnage, le jeu de données est divisé en un jeu de calibration (70%) 

et un jeu de validation (30%). Cette séparation est effectuée en veillant à ce que tous les 

pixels d'un même polygone soient attribués exclusivement à l'un des deux ensembles. 

Cette approche vise à limiter l'influence de l'autocorrélation spatiale dans l'entraînement 

du modèle RF  tout en maximisant le nombre d'échantillons disponibles. Contrairement à 

une méthode où une seule valeur par polygone serait retenue, nous conservons n valeurs 

par polygone, multipliant ainsi par n le nombre d’échantillons. 

 

Le modèle est ensuite entraîné en utilisant toutes les variables disponibles (10 

bandes spectrales + 17 indices), et les variables classées par importance selon le score 

MDA (Mean Decrease Accuracy). Cette méthode évalue l'importance des variables en 

mesurant la diminution de la précision du modèle lorsque les valeurs d'une variable 

particulière sont permutées de manière aléatoire. L’algorithme est ensuite entraîné avec 

la plus importante puis en ajoutant à chaque itération la variable restante ayant la 

meilleure MDA, jusqu'à avoir utilisé la totalité des variables. Le meilleur ensemble de 

variables est sélectionné au regard du coefficient Kappa le plus élevé et du nombre de 

variable le plus faible en cas d’égalité. 

Figure 7 : Carastéristiques des différentes classifications par RF menées  
 

Masque Nuages/Ombres Masque Forêt Classification 

dépérissements 

Nombre de polygones 

(retenus) par classe 

O : 29 

N : 29 

A : 29 

F : 18 

A : 18 

 

D : 211 

F : 212 

 

Zones échantillonnées NW + Centre NW + Dkdk Trinite + Dkdk 

Nombre de pixels 

échantillonnés par 

polygones retenus 

 

113  

 

43  

 

11 

Variables retenues B2, NDII11, GCC    NDMI, 

B3, B11, B5     B4, B8A, 

B12, Aoki, B8, RARSc, EVI, 

B7 

B3, B5, B11, B12,B4, 

GCC 

MSR, IRECI, RARSc, 

NBR, B12, B7, NDVI, B4, 

kNDVI, NDII11, B6, 

NDMI, B11, Aoki, TCW 

Résultats de la 

validation  

Kappa : 0,93 

F1 score  

O : 0,95 

N : 0,98 

A : 0,93 

Kappa : 0,98 

 

F1 score  

F : 0,99 

A : 0,99  

Kappa : 0,93 

 

F1 score  

D : 0,97 

F : 0,97  
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Le masque nuages généré dans cette chaîne de traitement, a été soumis à un 

filtre morphologique en deux étapes : une érosion suivie d'une dilatation, appliquées à 

l'aide d'une fenêtre glissante de 5x5 pixels. L'objectif est de réduire le bruit et de s'assurer 

que les zones de transition entre les ombres et les nuages sont correctement masquées 

lorsque nécessaire. De manière similaire, les zones de forêt issues du masque forêt ont 

été érodées à l'aide d'une fenêtre glissante de 3x3 pixels, afin de limiter la détection de 

faux positifs à proximité des zones non forestières. 

 

La classification entre forêt saine et dépérissements est ensuite réalisée à partir 

de la chaîne de traitement décrite plus haut à partir des images Sentinel-2. Les pixels 

correspondant à des nuages, des ombres ou à des zones d'occupation du sol non 

forestières sont systématiquement masqués pour améliorer la précision du résultat. 

Figure 8 : Synthèse de la méthode de validation utilisée pour la classification des 

dépérissements   

 

Pour vérifier la robustesse de 

la méthode utilisée et la qualité de la 

cartographie produite à partir de la 

classification par RF, une évaluation 

des résultats a été mise en place. 

Trois zones des 10*10km², distinctes 

des zones utilisées pour la 

constitution du jeu de données initial 

(Cf. Figure 8), ont été retenues pour 

procéder à cette évaluation pour les 

images de 2023 et une zone 

respectant les mêmes critères a été 

retenue pour 2024.  
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Figure 9 :  Carte de localisation des zones échantillonnage pour l’entrainement et le test 

du RF pour la classification des zones de dépérissements forestiers  

Dénomination des zones d’échantillonnage 
1 : Nord-Ouest (NW) A : RBI Lucifer/Dékou-Dékou (Dkdk 2) 

2 : RBI Lucifer/Dékou-Dékou (Dkdk) B : RNN la Trinité (Trinité 1) 

3 : Centre  C : RNN la Trinité (Trinité 2) 

4 : RNN la Trinité (Trinité) D : Crique Saut Portal (Portal) 

 

Les zones retenues pour 2023 comportent des taux de dépérissements détectés 

faibles, moyen et fort et se situent à proximité des zones utilisée pour l’échantillonnage 

initial. Tandis que la zone retenue pour 2024 comporte un taux de dépérissement plutôt 

fort et se situe dans une zone pour laquelle aucune image pléiades n’était disponible en 

2023 et qui se trouve à distance des zones utilisée pour la calibration du modèle.  
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Les ombres, nuages et occupations du sols ne correspondant pas à des zones 

forestières sur les images S2 ont encore une fois été exclues. L’objectif étant de comparer 

les résultats de la classification à partir de S2 aux images pléiades, les nuages et les 

ombres présents sur les images pléiades ont également été exclus pour cette opération. 

 

Dans un premier temps, l’échantillonnage par hyper cube latin a été envisagé mais 

n’a pas semblé adapté au problème posé ici. En effet, l’échantillon issu de cette méthode 

comportait un faible nombre de zones dépérissantes et une forte quantité de zones de 

transition entre forêt saine et dépérissements. Cette méthode a donc été mise de côté 

pour privilégier un échantillonnage aléatoire stratifié, plus adapté ici. Ainsi, dans chaque 

zone de 10*10km², 30 points correspondants à des dépérissements dans la cartographie 

produite et 70 points correspondants à des zones de forêt saine ont été échantillonné 

aléatoirement. En effet, la surface de dépérissement représentant une faible portion de 

l’espace, l’échantillonnage égale pour les deux classes aurait mené à l’échantillonnage 

de pixels très proches donc très similaires dans la classe dépérissement. Du même 

temps, la classe forêt saine étant beaucoup plus représentée dans ces espaces, un 

échantillonnage plus important sur ces zones semble favoriser la détection de faux 

négatifs.  

 

Résultats  

En ce qui concerne n, soit le nombre de pixels à échantillonner par polygones pour 

mettre en forme le jeu de données utilisé pour la classification des dépérissements par 

RF , la valeur retenue ici est n = 11 car elle permet d’obtenir le meilleur Kappa. La figure 

10 laisse à penser que cette valeur correspond à un compromis entre un nombre de pixel 

échantillonné important et un nombre de polygones échantillonné élevé (ce qui assure 

une plus grande diversité des valeurs). En effet, on constate que le Kappa diminue après 

avoir atteint 0.9318 (Kappa = 0.9308 pour n = 10) et l’on suppose que cette baisse est 

due à une réduction importante du nombre de polygones échantillonnés dans la classe 

forêt. En effet ces polygones font tous la même taille à l’origine et comportent 

sensiblement le même nombre de pixels (à l’exception de ceux avec des pixels masqués, 

ce qui explique la légère baisse de polygones échantillonnables pour cette classe entre 

n = 10 et n = 11). Cette réduction drastique réduirait aussi fortement la variabilité des 

pixels forêts utilisés dans le jeu d’entrainement alors que la forêt est une classe assez 

variable. L’impact moins fort de la réduction du nombre de polygones échantillonnables 

dans la classe dépérissements sur la valeur du kappa semble être due au fait que le 

facteur limitant pour cette classe pourrait davantage être le nombre de pixels 

échantillonnés. Pour vérifier ces hypothèses il pourrait être pertinent de comparer les 

variabilités inter-pixels et inter-polygones de chaque classe.  
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Figure 10 : Evolution du Kappa en fonction du nombre de pixels échantillonnés par 

polygones pour la classification des zones de dépérissements forestiers 

  

 

 

 

Les bandes et indices retenus pour la classification des dépérissements sont les 

suivants : MSR, IRECI, RARSc, NBR, B12, B7, NDVI, B4, kNDVI, NDII11, B6, NDMI, 

B11, Aoki, TCW. Les indices et bandes retenus pour cette classification (Cf. Figure 11) 

sont associés à la détection de la défoliation, du stress hydrique et du déclin de la 

végétation, souvent observés en période de sécheresse. Les bandes B11 et B12, 

sensibles à la teneur en eau des plantes, jouent un rôle crucial pour identifier les zones 

affectées par un stress sévère. La combinaison de ces variables permet une évaluation 

précise de la santé de la canopée. Sur la figure ci-dessous on observe des zones de 

plateau, qui laissent penser à une forte redondance entre les variables utilisées, ainsi on 

peut supposer qu’il est possible de réduire encore le nombre de variables utilisées dans 

le RF sans pour autant réduire significativement la qualité de la classification. 
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Figure 11 : Evolution du Kappa en fonction des variables séléctionnées pour la 

classification des zones de dépérissement forestier 

 

La carte ci-dessous (Fig. 12) représente le résultat de la classification pour la tuile 

Sentinel T21NZF du 6 septembre 2023. Cette zone, centrée sur le quart Nord-Ouest de 

la Guyane Française, montre une prévalence plus élevée des dépérissements dans 

l'Ouest. 

Les résultats mettent en avant l'apparition des dépérissements forestiers entre 

2020 et 2023 dans toutes les zones étudiées, suivie d'une légère diminution en 2024, 

sans toutefois revenir aux niveaux observés en 2020. La RBI Lucifer/Dékou-Dékou 

semble particulièrement vulnérable par rapport à la RNN de la Trinité, où les 

dépérissements sont moindres. En effet, on observe respectivement pour ces zones 0,67 

% de dépérissements pour la RBI Lucifer/Dékou-Dékou contre 0,33 % pour la RNN de la 

Trinité en 2023.  
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Figure 12 : Carte des dépérissements détectés pour la tuile S2 T21NZF le 06/09/2023 
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Figure 13 : Superficie des dépérissements détectés à partir de la tuile S2 T21NZF 

*les valeurs en % sont données en référence à la superficie non masquée de la zone concernée  
Année 2020 2023 2024 

unité ha % ha % ha % 

RBI Lucifer/Dékou-Dékou 7 0.01 401 0.67 237 0.41 

RBI Lucifer/Dékou-Dékou ZT 5km 19 0.02 1665 1.75 904 0.99 

RBI Lucifer/Dékou-Dékou ZT 10km 24 0.02 2023 2.13 1215 1.36 

RNN la Trinite 27 0.10 106 0.33 72 0.40 

RNN la Trinite ZT 5km 10 0.04 244 0.88 155 0.70 

RNN la Trinite ZT 10km 10 0.03 423 1.42 416 1.51 

T21NZF 293 0.03 12411 1.13 8013 0.85 
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Figure 14 : Carte des dépérissements détectés aux abords des réserves à partir de la tuile 

S2T21NZF le 06/09/2023 

 

 

 

 

 

 

 

Les cartes ci-contre (Figure 

14), permettent d’apprécier plus 

finement la répartition des 

dépérissements aux abords des 

réserves (RBI Dékou Dékou et 

RNN la Trinité). Sur ces cartes, le 

figuré de densité des 

dépérissements est produit à partir 

de la méthode KDE (Kernel 

Density Estimation)appliquée aux 

centroïdes des polygones de 

dépérissements détectés sur 

l’ensemble de la tuile.  

Les zones tampons de 5 km 

et 10 km autour des zones 

protégées, ainsi que la totalité de 

la tuile Sentinel, montrent que c’est 

dans la zone tampon de 10 km que 

le phénomène est le plus sévère, 

avec 2,13% (2023 ha) pour la RBI 

Lucifer/Dékou-Dékou et 1,42% 

(423 ha) pour la RNN de la Trinité 

en 2023. Ces proportions sont bien 

plus élevées que dans les 

réserves elles-mêmes ou dans le 

reste de la tuile Sentinel, où les 

dépérissements représentent 

1,13% soit 12 411 ha.  

 

Les résultats de la validation et de l’évaluation effectuées montrent une bonne 

concordance entre les jeux de données utilisés et la classification obtenue par RF (voir 

figure ci-dessous). Toutefois, une diminution significative du coefficient de Kappa est 
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observée entre la validation (0,93) et l’évaluation (0,74). Elle pourrait être attribué à un 

surapprentissage du modèle pour les zones échantillonnées initialement et/ou aux 

différences entre les jeux de données, notamment en ce qui concerne la méthode 

d'échantillonnage. 

En effet, les polygones utilisés pour entraîner le modèle ont été sélectionnés afin 

de favoriser une cartographie précise des dépérissements, avec une approche plus 

restrictive pour la classification de ces derniers. Car, en réalité, bien qu'il existe des zones 

nettement dépérissantes et d'autres clairement saines, il existe également un continuum 

de valeurs spectrales entre ces deux états, reflétant souvent une transition progressive. 

Ainsi, lors de la constitution du jeu de données initial, les polygones correspondant aux 

zones de dépérissement ont été placés dans des zones présentant un dépérissement 

franc, tandis que ceux correspondant aux forêts saines ont été positionnés à la fois au 

cœur des zones forestières et à proximité des zones dépérissantes. Cela a permis 

d’éviter une surreprésentation des zones de dépérissement dans la classification finale.  

En revanche, le jeu de données utilisé pour l’évaluation a été généré aléatoirement 

à partir des résultats de la classification, incluant parfois des zones plus difficiles à 

interpréter visuellement. Ce qui peut expliquer que les zones de dépérissement affichent 

le F1-score le plus faible lors de l’évaluation (0,81 contre 0,93 pour les zones de forêt 

saine). Cela peut révéler une prévalence plus élevée de faux négatifs que de faux positifs, 

ce qui répondrait à l'objectif initial de produire une cartographie recensant uniquement les 

zones de dépérissement franc.  

 

 Kappa F1 Scores 

 Forêt saine Dépérissements 

Validation  0.93 0.96 0.97 

Evaluation 0.74 0.93 0.81 
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Figure 15 : Carte de changement des dépérissements détectés sur la Crique Saut Portal 

(2023-2024) 

 
 

Enfin, ce travail a permis de mettre en évidence l’existence d’une zone 

significativement impactée par les dépérissements au niveau de Crique Portal. La 

disponibilité d’une image Pléiades sur cette zone en 2024 (février) a permis d’envisager 

une évaluation des résultats de la classification pour une zone et une date n’ayant pas 

été utilisées dans la construction du jeu de données initial. Cependant, la photo-

interprétation des zones de dépérissements à partir des images Pléiades, nécessaires à 

cette démarche n’a pas été possible. En effet, les zones touchées par les dépérissements 

présentaient des valeurs spectrales trop proches de celles des zones de forêts saine pour 

les quelques bandes disponibles pour les images Pléiades. Ce qui pourrait être dû à une 

reprise de la végétation (probablement lianes et végétation basse/pionnière) entre 

septembre 2023 et février 2024 liée à l’ouverture de la canopée dans les zones 

dépérissantes. Cependant, l’utilisation du RF entrainé sur les données de 2023 permet 

une classification pour 2024 qui semble plutôt cohérente avec les zones touchées en 
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2024 et qui ne semble pas mettre en avant de nouvelles zones touchées. On peut donc 

supposer une relative robustesse du RF entrainé pour la classification des 

dépérissements et ce même après la reprise de la végétation grâce à la richesse de 

l’information spectrale contenue dans les bandes S2 sans pouvoir pour le moment valider 

cette hypothèse.  

Discussion   

La télédétection s'est révélée être un outil efficace pour surveiller les 

dépérissements forestiers observés en Guyane Française en 2022. Grâce à l’utilisation 

combinée des données de résolution moyenne (Sentinel-2) et très haute résolution 

(Pléiades), une cartographie détaillée des dépérissements a pu être réalisée sur la tuile 

Sentinel-2 T21NZF, pour l’année 2023, permettant une détection plus précise du 

phénomène. L'analyse a confirmé que les dépérissements se situent principalement hors 

des réserves naturelles, bien que proches de sites protégés tels que la Réserve 

Biologique de Lucifer-Dékou-Dékou et la Réserve de la Trinité. Cette observation pourrait 

alerter sur la vulnérabilité accrue de ces zones, même en périphérie des espaces 

protégés. 

L'utilisation de masques produit par RF a permis de limiter les biais lors des 

classifications, mais des améliorations pourraient encore être apportées. L’adoption 

d’une validation par k-fold semble être une piste prometteuse pour maximiser 

l’information extraite des échantillons initiaux, renforçant ainsi la robustesse des résultats. 

En effet, l'algorithme de classification Random Forest a atteint un Kappa de 0,93 lors de 

la validation, indiquant une concordance satisfaisante. Cependant, des divergences ont 

été relevées lors de l'évaluation avec un Kappa de 0,74, ce qui souligne la nécessité de 

continuer à ajuster le modèle. 

Une autre difficulté est apparue dans la distinction des zones de défoliation face à 

la reprise de la végétation, surtout sur les images Pléiades récentes de 2024. Cette 

régénération rapide complexifie la classification RF, et il serait pertinent d’évaluer l’impact 

exact de cette dynamique sur la qualité des résultats. D’autre part, les bandes B11 et 

B12, sensibles à l'humidité, ainsi que les indices NDII11, NDMI, et MSR se sont avérés 

cruciaux pour la détection du stress hydrique et de la défoliation. Ces résultats renforcent 

l'hypothèse selon laquelle la sécheresse et les perturbations climatiques jouent un rôle 

clé dans les dépérissements forestiers observés. 

Il a été envisagé de produire une classification sur les tuiles S2 adjacente mais 

cela n’a pas été possible. Il semblerait que les tuiles concernées présentent un décalage 

dans les valeurs spectrales qui soit trop important pour pouvoir mener à bien la 

classification à partir du RF entrainé sur la tuile S2 T21NZF. Une exploration plus 

approfondie des causes des erreurs, ainsi qu’un élargissement du jeu de données et 

l’ajout de la variable "tuile", pourraient réduire ces biais.  



26 
 

Enfin, l’application de techniques d’apprentissage automatique avancées, telles 

que les réseaux neuronaux convolutifs (CNN), pourrait constituer une avancée majeure 

pour affiner les résultats. De même que l’utilisation d’algorithme de détection de 

changement dans les séries temporelles. Ces approches permettraient de mieux saisir 

les variations subtiles de la végétation et de développer des modèles encore plus précis 

pour la détection des dépérissements. 

Dans l'ensemble, ce travail pose les bases pour une meilleure compréhension des 

causes des dépérissements et fournit des informations clés pour l'élaboration de 

stratégies adaptées à la gestion des zones impactées ou à risque. Des efforts 

supplémentaires dans l'amélioration des méthodes de télédétection et des algorithmes 

de classification contribueront à une surveillance plus précise et à une prise de décision 

mieux informée dans les années à venir. 
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